Variables

Control Variable – Definition, Types and Examples

Control Variable

Control Variable

Definition:

Control variable, also known as a “constant variable,” is a variable that is held constant or fixed during an experiment or study to prevent it from affecting the outcome. In other words, a control variable is a variable that is kept the same or held constant to isolate the effects of the independent variable on the dependent variable.

For example, if you were conducting an experiment to test how temperature affects plant growth, you might want to control variables such as the amount of water, the amount of sunlight, and the type of soil to ensure that these variables do not interfere with the results. By controlling these variables, you can isolate the effect of temperature on plant growth and draw more accurate conclusions from the experiment.

Types of Control Variables

Types of Control Variables are as follows:

Environmental Control Variables

These are variables related to the physical environment in which the experiment is conducted, such as temperature, humidity, light, and sound.

Participant Control Variables

These are variables related to the participants in the experiment, such as age, gender, prior knowledge, or experience.

Experimental Control Variables

These are variables that the researcher manipulates or controls to ensure that they do not affect the outcome of the experiment. For example, in a study on the effects of a new medication, the researcher might control the dosage, frequency, or duration of the treatment.

Procedural Control Variables

These are variables related to the procedures or methods used in the experiment, such as the order in which tasks are completed, the timing of measurements, or the instructions given to participants.

Equipment Control Variables

These are variables related to the equipment or instruments used in the experiment, such as calibration, maintenance, or proper functioning.

How to Control a Variable

To control a variable in a scientific experiment, you need to ensure that it is kept constant or unchanged throughout the experiment. Here are some steps to help you control a variable:

Identify the Variable

Start by identifying the variable that you want to control. This can be an environmental, subject, procedural, or instrumentation variable.

Determine the Level of Control Needed

Depending on the variable, you may need to exert varying levels of control. For example, environmental variables may require you to control the temperature, humidity, and lighting in your experiment, while subject variables may require you to select a specific group of participants that meet certain criteria.

Establish a Standard Level

Determine the standard level or value of the variable that you want to control. For example, if you are controlling the temperature, you may set the temperature to a specific degree and ensure that it is maintained at that level throughout the experiment.

Monitor the Variable

Throughout the experiment, monitor the variable to ensure that it remains constant. Use appropriate equipment or instruments to measure the variable and make adjustments as necessary to maintain the desired level.

Document the Process

Document the process of controlling the variable to ensure that the experiment is replicable. This includes documenting the standard level, monitoring procedures, and any adjustments made during the experiment.

Examples of Control Variables

Here are some examples of control variables in Scientific Experiments and Research:

  • Environmental Control Variables Example: Suppose you are conducting an experiment to study the effect of light on plant growth. You would want to control environmental factors such as temperature, humidity, and soil nutrients. In this case, you might keep the temperature and humidity constant and use the same type and amount of soil for all the plants.
  • Subject Control Variables Example: If you are conducting an experiment to study the effect of a new medication on blood pressure, you would want to control subject variables such as age, gender, and health status. In this case, you might select a group of participants with similar ages, genders, and health conditions to ensure that these variables do not affect the results.
  • Procedural Control Variables Example: Suppose you are conducting an experiment to study the effect of distraction on reaction time. You would want to control procedural variables such as the time of day, the order of the tasks, and the instructions given to the participants. In this case, you might ensure that all participants perform the tasks in the same order, at the same time of day, and receive the same instructions.
  • Instrumentation Control Variables Example: If you are conducting an experiment to study the effect of a new measurement device on the accuracy of readings, you would want to control instrumentation variables such as the type and calibration of the device. In this case, you might use the same type and model of the device and ensure that it is calibrated before each use.

Applications of Control Variable

Control variables are widely used in scientific research across various fields, including physics, biology, psychology, and engineering. Here are some applications of control variables:

  • In medical research, control variables are used to ensure that any observed effects of a new treatment or medication are due to the treatment and not some other variable. By controlling subject variables such as age, gender, and health status, researchers can isolate the effects of the treatment and determine its effectiveness.
  • In environmental research, control variables are used to study the effects of changes in the environment on various species or ecosystems. By controlling environmental variables such as temperature, humidity, and lighting, researchers can determine how different species adapt to changes in the environment.
  • In psychology research, control variables are used to study the effects of different interventions or therapies on cognitive or behavioral outcomes. By controlling procedural variables such as the order of tasks, the length of time allotted for each task, and the instructions given to participants, researchers can isolate the effects of the intervention and determine its effectiveness.
  • In engineering research, control variables are used to study the effects of different design parameters on the performance of a system or device. By controlling instrumentation variables such as the type of measurement device used and the calibration of instruments, researchers can ensure that the measurements are accurate and reliable.

Purpose of Control Variable

The purpose of a control variable in an experiment is to ensure that any observed changes or effects are a result of the manipulation of the independent variable and not some other variable. By keeping certain variables constant, researchers can isolate the effects of the independent variable and determine whether it has a significant effect on the dependent variable.

Control variables are important because they help to increase the reliability and validity of the experiment. Reliability refers to the consistency and reproducibility of the results, while validity refers to the accuracy and truthfulness of the results. By controlling variables, researchers can reduce the potential for extraneous or confounding variables that can affect the outcome of the experiment and increase the likelihood that the results accurately reflect the effect of the independent variable on the dependent variable.

Characteristics of Control Variable

Control variables have the following characteristics:

  • Constant: Control variables are kept constant or unchanged throughout the experiment. This means that their values do not vary or change during the experiment. Keeping control variables constant helps to ensure that any observed effects or changes are due to the manipulation of the independent variable and not some other variable.
  • Independent: Control variables are independent of the independent variable being studied. This means that they do not affect the relationship between the independent and dependent variables. By controlling for independent variables, researchers can isolate the effect of the independent variable and determine its impact on the dependent variable.
  • Documented: Control variables are documented in the experiment. This means that their values and methods of control are recorded and reported in the results section of the research paper. By documenting control variables, researchers can demonstrate the rigor and transparency of their study and allow other researchers to replicate their methods.
  • Relevant: Control variables are relevant to the research question. This means that they are chosen based on their potential to affect the outcome of the experiment. By selecting relevant control variables, researchers can reduce the potential for extraneous or confounding variables that can affect the outcome of the experiment and increase the reliability and validity of the results.
  • Varied: Control variables can be varied across different conditions or groups. This means that different levels of control may be needed depending on the research question or hypothesis being tested. By varying control variables, researchers can test different hypotheses and determine the factors that affect the outcome of the experiment.

Advantages of Control Variable

The advantages of using control variables in an experiment are:

  • Increased accuracy: Control variables help to increase the accuracy of the results by reducing the potential for extraneous or confounding variables that can affect the outcome of the experiment. By controlling for these variables, researchers can isolate the effect of the independent variable on the dependent variable and determine whether it has a significant impact.
  • Increased reliability: Control variables help to increase the reliability of the results by reducing the variability in the experiment. By keeping certain variables constant, researchers can ensure that any observed changes or effects are due to the manipulation of the independent variable and not some other variable.
  • Reproducibility: Control variables help to increase the reproducibility of the results by ensuring that the same results can be obtained when the experiment is repeated. By documenting and reporting control variables, researchers can demonstrate the rigor and transparency of their study and allow other researchers to replicate their methods.
  • Generalizability: Control variables help to increase the generalizability of the results by reducing the potential for bias and increasing the external validity of the experiment. By controlling for relevant variables, researchers can ensure that their findings are applicable to a broader population or context.
  • Causality: Control variables help to establish causality by ensuring that any observed changes or effects are due to the manipulation of the independent variable and not some other variable. By controlling for confounding variables, researchers can increase the internal validity of the experiment and establish a cause-and-effect relationship between the independent and dependent variables.

Disadvantages of Control Variable

There are some potential disadvantages or limitations of using control variables in an experiment:

  • Complexity: Controlling for multiple variables can make an experiment more complex and time-consuming. This can increase the likelihood of errors and reduce the feasibility of the experiment, especially if the control variables require a lot of resources or are difficult to measure.
  • Artificiality: Controlling for variables can make the experimental conditions artificial and not reflective of real-world situations. This can reduce the external validity of the experiment and limit the generalizability of the findings to real-world settings.
  • Limited scope: Controlling for specific variables can limit the scope of the experiment and make it difficult to generalize the results to other situations or populations. This can reduce the external validity of the experiment and limit its practical applications.
  • Assumptions: Controlling for variables requires making assumptions about which variables are relevant and how they should be controlled. These assumptions may not be valid or accurate, and the results of the experiment may be affected by uncontrolled variables that were not considered.
  • Cost: Controlling for variables can be costly, especially if the control variables require additional resources or equipment. This can limit the feasibility of the experiment, especially for researchers with limited funding or resources.

Limitations of Control Variable

There are several limitations of using control variables in an experiment, including:

  • Not all variables can be controlled: There may be some variables that cannot be controlled or manipulated in an experiment. For example, some variables may be too difficult or expensive to measure or control, or they may be affected by factors outside of the researcher’s control.
  • Interaction effects: Control variables can interact with each other, which can lead to unexpected results. For example, controlling for one variable may have a different effect when another variable is also controlled, or when the two variables interact with each other. These interaction effects can be difficult to predict or control for.
  • Over-reliance on statistical significance: Controlling for variables can increase the statistical significance of the results, but this may not always translate to practical significance or real-world significance. Researchers should interpret the results of an experiment in light of the practical significance, not just the statistical significance.
  • Limited generalizability: Controlling for variables can limit the generalizability of the results to other populations or situations. If the control variables are not representative of other populations or situations, the results of the experiment may not be applicable to those contexts.
  • May mask important effects: Controlling for variables can mask important effects that are related to the independent variable. By controlling for certain variables, researchers may miss important interactions between the independent variable and the controlled variable, which can limit the understanding of the causal relationship between the two.

About the author

Muhammad Hassan

Researcher, Academic Writer, Web developer